
6

1 BRIEF INTRODUCTION TO THE PROGRAM R

In the textbook we use the widely used free statistical program R. It works on the principle of written

commands that execute functions contained in various libraries and used in the preparation and

statistical processing of data. Similar statistical processing of data can be done with different

functions, so in the examples we will show different ways to increase the reader's knowledge of the

set of important functions that allow statistical processing of data in the field of economics and social

sciences.

In addition to the R program1, we will also use an interface program to facilitate its use. In this

textbook, we will use the easy-to-use, free interface called RStudio2, which can be used in a

Windows, macOS, or Linux environment. Alternatively, RStudio can be used in the cloud (RStudio

Cloud3), where the program does not need to be installed on a computer, but all statistical analysis is

performed through a web browser and a user account on the RStudio Cloud website. The

disadvantage of this approach is that the user is limited by the number of free monthly usage hours.

Regardless of the usage approach chosen, the RStudio interface is identical (Figure 1).

Figure 1: RStudio interface

RStudio consists of three windows. On the left is the Console window ❶, where we write the R

commands that we use to statistically process the data. On the top right is the Environment window

❷, which lists the currently available data tables that RStudio can access directly. On the bottom

right ❸, files, saved in computer, are shown (if we use Cloud version, files need to be uploaded to

the server).

Although we can write R commands directly to the console, this is not practical approach because it

is easy to make mistakes. A better choice is to use an R Markdown file (extension .Rmd), which

1 https://cran.r-project.org/
2 https://posit.co/download/rstudio-desktop/
3 https://rstudio.cloud/

7

makes it easy to write and edit commands and then generate a statistical analysis report. Important

advantages are reproducibility of statistical analysis and sharing the R code. Such R Markdown file

is created using the File - New File - R Markdown function within the RStudio interface.

When we use it for the first time, we need to install certain libraries, which RStudio does

automatically (it asks us if we want to install them - when RStudio tells us that some libraries are

missing, we agree to install them). We name the R Markdown and choose OK.

Figure 2: Creating new R Markdown document in RStudio

The window shown in Figure 3 will open. It already contains some examples of R commands that

can be executed with the test data included in the R environment, so for the new analysis we delete

the records from the file starting from line 11.

Figure 3: An example of an R Markdown document in RStudio

8

An R Markdown file consists of white and gray boxes, the latter being called an R chunk. In the gray

box we write R commands, and by default the results are displayed below the gray box (chunk output

inline), but in the preferences we can also change that the results are displayed in the console (chunk

output in console). Each R chunk starts with the tag ̀ ``{r} and ends with the tag ̀ ``, and between

the tags we write the R command. Let us give an example.

If we want to enter a comment in the gray field, we must prefix it with #, otherwise the program will

treat it as an R command. In the white fields you can write title, content text, explanations of the

results, etc. Let us give an example.

We create a new gray box by standing in the white box where we want to write a new R command,

and then selecting Insert → R (keyboard shortcut CTRL + ALT + i). A new R chunk appears, into

which we write the command. We execute the single R chunk by clicking the green arrow on the

right side of the gray box, or by selecting the corresponding lines with the mouse and pressing the

keys CTRL + Enter on the keyboard. Example: If we run the gray box with the summary(cars)

command, the white box will display the statistical parameter estimates for the testing dataset called

cars contained in the R environment. We will also explain the results in white box.

When we run the command plot(pressure), the test plot is drawn (see Figure 4). When we

prepare the final R Markdown document, we select the Knit command at the top of the R Markdown

document. The entire document will be translated and executed, and if everything is written correctly,

an HTML window will open with the results (it is also possible to get the results in a PDF and Word

format). The program will ask us to save the R markdown document and then it will start translating

it. If an error occurs in any part of the R command set, RStudio informs us about it and writes down

in which line the error is. If the commands are executed correctly, an HTML window opens with the

results of the statistical analysis. The content can be open in Web Browser and freely copied or even

published online using the function Publish (RPubs) (Figure 5).

9

Figure 4: An example of R markdown

Figure 5: An HTML window with the results obtained with R Markdown and the Knit command

When using R functions (e.g. summary, plot, etc.), you can use the Help function, which explains

how the functions must be used. The help command is activated by selecting the name of the function

10

written in R Markdown and pressing the F1 key on the keyboard. In the right bottom part of RStudio,

a description of the function, the name of the library in which the function is located (in curly brackets

{}), and how the function is used are displayed (see Figure 6). Alternatively, we can search the Web

for examples how the command for each function is property written.

Figure 6: Help for function summary

When installing the R programme, the most important libraries are installed automatically (for

example, the {base} library), but many useful libraries are unfortunately not included, but must be

installed the first time they are used in RStudio. The next time the program is used, the installation

is no longer necessary, but library must be activated. The installed libraries can be checked on the

Packages tab in the bottom right part of RStudio (currently active libraries are marked with a check

mark). The libraries loaded in the User Library are the libraries we installed additionally, and the

libraries installed in the System Library are the base libraries we got by installing the R program. For

certain libraries, RStudio itself informs us that they need to be installed. The library is installed with

the command:

 install.packages("library_name")

The name of the library must be enclosed in quotation marks and it is case sensitive. When we need

a specific library that is currently not active, we activate it with the command:

 library(library_name)

The name of the library is given without quotation marks and it is case sensitive. This command

activates the library and we can use the functions it contains.

Throughout the book, many data files and R codes will be used. All are available for download on

the Textbook website. There will be three types of files:

• file with the extension .Rmd: An R Markdown file containing R commands and comments;

• file with the extension .html: output with results made with the Knit function;

• file with extension .csv: data file in .csv format;

• file with extension .xlsx: data file in .xlsx format.

11

At the end of the introduction, it should also be mentioned that although the use of the software

package R may be difficult at the beginning, the user learns it very quickly and it is quite comparable

to other statistical programs in terms of difficulty, and at the same time it is open source and free.

Because of the widespread use of R, if we encounter a problem, we can simply use a web browser

and find out very quickly what is wrong with our code.

In the following pages, two illustrations are given about basic data manipulation and analysis with R

Studio.

1.1 Illustration 1: Manual data entry

We have data of Age and Gender for 6 people. We would like to input the data into the R program.

ID Age Gender

1 20 Male

2 25 Female

3 21 Female

4 18 Male

5 24 Male

6 23 Female

We will use the data.frame function, which allows data to be entered manually. Non-numeric

variables such as gender will be entered with numbers. Let us decide to code Male with number 1

and Female with number 2. The data is stored in a data frame called mydata. With the <- tag we

assign the right standing command to the left standing object. It is very similar to the tag = but <- is

usually used.

#Assigning the function data.frame to the object called mydata.4

mydata <- data.frame("ID" = c(1, 2, 3, 4, 5, 6),

 "Age" = c(20, 25, 21, 18, 24, 23),

 "Gender" = c(1, 2, 2, 1, 1, 2))

print(mydata) #Showing the data set

ID Age Gender

1 1 20 1

2 2 25 2

3 3 21 2

4 4 18 1

5 5 24 1

6 6 23 2

We created 3 variables (ID, Age and Gender) and store them in a data frame (name of the table with

the data in the program R). The variables are represented with a vector of 6 values entered with the

c() command. Each time we are entering more than only one value, this command must be used.

4 Text in gray boxes represents R commands in Courier New font. Text in Times New Roman italic font

beginning with # represents the explanation of the executed R command. The gray boxes are followed by a

white box with the results of the executed command.

12

The names of the variables must be written with quotation marks. The function print() shows the

data frame.

We will do some basic data manipulation. We create a new data frame called mydata2 that contains

only the variables ID and Age and excludes the person ID 4. We perform the data manipulation using

the mydata[,] command. The values before the comma refer to the rows of the data frame and

the values after the comma refer to the columns of the data frame.

mydata2 <- mydata[-4 , c(1, 2)] #Exclusion of the 4th row and selection of the 1st and the

 2nd column.

print(mydata2)

ID Age

1 1 20

2 2 25

3 3 21

5 5 24

6 6 23

Let us assume that the student ID 1 is 22 years old (and not 20). We can change individual values in

the data frame by specifying the position of the value we want to change.

mydata[1, 2] <- 22

print(mydata)

ID Age Gender

1 1 22 1

2 2 25 2

3 3 21 2

4 4 18 1

5 5 24 1

6 6 23 2

We would like to add to existing data frame mydata a new variable Height. Let us assume that

heights of 6 people are: 180, 173, 172, 178, 182, 169. We refer to variables in data frame with

command dataframe$variable (variable, which is saved in dataframe). We can call individual

variable by name_of_dataframe + $ + name_of_variable.

mydata$Height <- c(180, 172, 172, 178, 182, 169) #Adding a new variable Height to

 exisiting data frame, named mydata.

print(mydata)

ID Age Gender Height

1 1 22 1 180

2 2 25 2 172

3 3 21 2 172

4 4 18 1 178

5 5 24 1 182

6 6 23 2 169

For categorical variables coded with values, it is advisable to use the factor function, which

converts the variable into a factor (categorical variable).

#Creating new variable, named GenderF, which is factor (categorical variables) with categories 1 and 2

13

where 1 means Male and 2 Female.

mydata$GenderF <- factor(mydata$Gender,

 levels = c(1, 2),

 labels = c("M", "F"))

print(mydata)

ID Age Gender Height GenderF

1 1 22 1 180 M

2 2 25 2 172 F

3 3 21 2 172 F

4 4 18 1 178 M

5 5 24 1 182 M

6 6 23 2 169 F

1.2 Illustration 2: Reading .csv data file

In program R Studio we open the file Rading data.Rmd, which is the R Markdown file. It includes R

code for analysis of the dataset named Reading csv data.csv.

knitr::opts_chunk$set(echo = TRUE)

options(width = 70) #Width of the html output

First R chunk is setup chunk which allows us to set the form of results output. If we want to copy

results to word document, width of 70 is advised to be used. In the next R chunk we will read the

.csv datafile. R function read.table() is used to read .csv datafiles. If .csv data file is in the same

folder as .Rmd file, used to analyze that data file, we just write ./ and name of the data file. Otherwise

the full path of the data file must be written.

#Data import

mydata <- read.table("./Reading csv data.csv", #The name of the file which the data

 are to be read from

 header = TRUE, #A logical value indicating whether the file contains

 the names of the variables as its first line

 sep = ";", #The field separator character

 dec = ",") #The character used in the file for decimal points

We will show the first 6 rows of data frame, called mydata.

#Showing first 6 rows of dataframe

head(mydata)

ID Height Weight

1 1 179.0 70

2 2 178.0 68

3 3 174.0 64

4 4 174.0 63

5 5 173.5 61

6 6 173.0 60

Description of variables:

• ID of a person

14

• Height in cm

• Weight in kg

In the next step we will order people (units, i.e. rows of data frame) by their height.

#Ordering units by height

head(mydata[order(mydata$Height),])

ID Height Weight

20 20 166 55

8 8 168 57

9 9 168 56

7 7 170 57

18 18 170 58

19 19 170 57

In the next step we would like to calculate body mass index, which is defined as weights of a person

in kg, divided by squared height in meters.

mydata$Height_m <- mydata$Height / 100 #Calculating new variable Height in meters and

 saving it to the existing data frame

mydata$BMI <- mydata$Weight / mydata$Height_m^2 #Calculating new variable Body

 mass index

head(mydata)

ID Height Weight Height_m BMI

1 1 179.0 70 1.790 21.84701

2 2 178.0 68 1.780 21.46194

3 3 174.0 64 1.740 21.13886

4 4 174.0 63 1.740 20.80856

5 5 173.5 61 1.735 20.26427

6 6 173.0 60 1.730 20.04745

Lastly, we will show descriptive statistics and boxplot for newly created variable BMI.

summary(mydata$BMI) #Descriptive statistics of variable BMI

Min. 1st Qu. Median Mean 3rd Qu. Max.

19.72 20.06 21.10 21.20 22.35 23.25

boxplot(mydata$BMI) #Showing boxplot for variable BMI

15

1.3 Illustration 3: Reading .xlsx data file

In this illustration we will assume that randomly assigned to 3 groups, each group receiving one type

of medicine (A, B or C), which have a negative side effect of severe headaches. We would like to

analyze if there are difference in average number of headaches between receiving medicine A, B or

C.

We have dataset in .xlsx format, which can be read with function read_xlsx. This function demands

specific library, called readxl. Since this library is not installed in R package by default, we need

to install it with function install.packages. Once library is installed on computer, it only needs

to be activated with function library. To prevent running the function install.packages every

time, we used # in front of the function, which prevents running it. When importing .xlsx data, it is

advised to convert it to typical data frame format, which is done with function as.data.frame.

#install.packages("readxl") #Installing library. Once it is installed, we use # to prevent

 reinstalling

library(readxl) #Activating library

mydata <- read_xlsx("./Reading xlsx data.xlsx") #Reading data set in xlsx format

mydata <- as.data.frame(mydata) #Creating data frame format

head(mydata)

ID Headache Medicine

1 1 59 A

2 2 50 A

3 3 45 A

4 4 55 A

5 5 35 A

6 6 28 A

Description:

16

• ID of a person

• Headache: number of headaches over 1 year period

• Medicine: Type of medicine (A, B or C)

Since variable Medicine is nonnumeric, we will convert it to factor.

mydata$MedicineF <- factor(mydata$Medicine,

 levels = c("A", "B", "C"),

 labels = c("A", "B", "C"))

With function str we can check the type of the variable used in data frame.

str(mydata)

'data.frame': 30 obs. of 4 variables:

$ ID : num 1 2 3 4 5 6 7 8 9 10 ...

$ Headache : num 59 50 45 55 35 28 29 40 39 35 ...

$ Medicine : chr "A" "A" "A" "A" ...

$ MedicineF: Factor w/ 3 levels "A","B","C": 1 1 1 1 1 1 1 1 1 1 ...

Some of most used types of variables are:

• num: numeric data with or without decimal values,

• int: special type of numeric data without decimals (discrete variable), integer,

• chr: text data, character,

• factor: categorical variable,

• logical: a variable with only two values: TRUE or FALSE.

In the last step we will show descriptive statistics with function summary and descriptive statistics

by type of medicine, which will be shown with function describeBy (library psych).

summary(mydata[(c("Headache", "MedicineF"))])

Headache MedicineF

Min. :15.00 A:10

1st Qu.:25.75 B:10

Median :36.00 C:10

Mean :35.10

3rd Qu.:41.75

Max. :59.00

#Showing descriptive statistics by groups

library(psych)

describeBy(x = mydata$Headache,

 group = mydata$MedicineF)

Descriptive statistics by group

group: A

vars n mean sd median trimmed mad min max range skew

X1 1 10 41.5 10.56 39.5 41 11.86 28 59 31 0.3

kurtosis se

X1 -1.45 3.34

--

17

group: B

vars n mean sd median trimmed mad min max range skew

X1 1 10 37 10.37 40.5 37.75 5.93 18 50 32 -0.66

kurtosis se

X1 -1.1 3.28

--

group: C

vars n mean sd median trimmed mad min max range skew kurtosis

X1 1 10 26.8 8.84 24 26.75 11.12 15 39 24 0.14 -1.84

se

X1 2.8

We can see that people using medicine A had on average 41.5 severe headaches in 1 year period,

people taking medicine B 37, while people taking medicine C only 26.8.

