
Page 1 of 14

 FUNCTIONS FOR ECONOMISTS

V2.0, 08. oktober 2023 DENIS MARINŠEK, www.denis-statistika.si

A table of data in R is called »data frame«. Such a table can be arbitrarily manipulated and

analyzed with R functions and R commands. An example of such a table, which we call mydata,

is given below:

Table is manipulated by mydata[,]. The notation before the comma refers to rows, the

notation after the comma refers to columns. Examples:
 mydata[c(-4, -5),]

 mydata[, c(1, 2, 3)] or mydata[, c(1:3)]

 mydata[4, 3] <- 172

In the first example, we delete the 4th and 5th rows from the data table, in the second example,

we select the 1st, 2nd and 3rd variables (columns), and in the third example, we replace the

element in the 4th row and the 3rd column (i.e. 170) with the value 172. The single variable is

accessed with the $ character. Example: mydata$Age.

The data table can be ordered according to the selected variable with the function order:
 mydata[order(mydata$Age),]

 mydata[order(-mydata$Height),]

In the first case, the data table is arranged in ascending order according to the age of the

persons, in the second case in descending order according to the height of the persons.

The character <- (assign left) assigns a function or the command on the right to the selected

object on the left.

The %>% (pipe) sign means »then«. To use it, we need to install the library dplyr.

R functions and commands are written in R Markdown, and all text must be enclosed in quotes.

The R program distinguishes between upper and lower case, punctuation, brackets, etc., but it

is not sensitive to spaces.

Wide format of the data table

Long format of the data table

Data specified in a frequency table should be converted to raw data using the rep function (see

function explanation below):

Frequency table

Raw data

Page 2 of 14

 FUNCTIONS FOR ECONOMISTS

V2.0, 08. oktober 2023 DENIS MARINŠEK, www.denis-statistika.si

BASIC R FUNCTIONS and COMMANDS
install.packages()

library()

Installing and activating the new library.

install.packages("psych")

library(psych)

Basic functions for installing and activating new libraries that are not yet installed in the R

program. The new library needs to be installed only once, after that it should only be activated.

Basic libraries (e.g. base, stats) are installed and activated automatically.

help() Help in using functions and commands.

help(read.table)

It explains how each function or command works and how it should be used. Help can also

be accessed by clicking F1 when the name of the function is selected with the mouse in R

Markdown.

read.table() Reading a .csv data file.

mydata <- read.table("./data.csv",

 header = TRUE,

 sep = ";",

 dec = ",")

Reading a .csv file that contains variable names in the first line. We specify how the variables

are separated (sep) and the type of decimal separator (dec).

read_xlsx() Reading an Excel file with data.

library(readxl)

mydata <- read_xlsx("./data.xlsx")

mydata <- as.data.frame(mydata)

Reading files saved in Excel format. To use the function, we need to install and activate the

readxl library. When we import data, we also use the as.data.frame function to convert

the object (table with data) into data.frame format.

data.frame() Manual data entry creating a data table.

mydata <- data.frame("Age" = c(30, 25, 50),

 "Height" = c(180, 170, 175))

We have created a data table with three units and two variables.

c() Creating a vector of elements.

c(4, 5, 10)

c("M","M","F")

If you specify more than one element, write c before the parenthesis. Letters/texts must

always be enclosed in quotation marks.

sort() Sorting values by size.

sort(mydata$Age, decreasing = FALSE)

We sort the values of the variable in ascending or descending order.

factor() Creating factor.

factor(mydata$Gender,

 levels = c(1, 0),

 labels = c("M", "F"))

Categorical variables, whose values are usually encoded with numeric codes, are converted

into a factor. Only then will they be treated correctly as categorical variables by the R program.

In the argument levels we write down the codes with which the variable is entered in the

data table, and in the argument labels we write down what these codes mean.

mydata$GenderF <- factor(mydata$Gender,

 levels = c(1, 0),

 labels = c("M", "F"))

We have created a new variable GenderF and stored it in an existing data table.

head()

print()

tail()

Display a table of data.

head(mydata)

print(mydata)

tail(mydata)

We display the first 6 rows of the data table (head), the entire table (print) or the last 6 rows

of the data table (tail).

Page 3 of 14

 FUNCTIONS FOR ECONOMISTS

V2.0, 08. oktober 2023 DENIS MARINŠEK, www.denis-statistika.si

round()

floor()

ceiling()

Rounding values.

round(mydata, 2)

The values in the data table are rounded to two decimal places.

floor(214.8)

Round the value down to the first integer. The result of the function in this particular case is

214.

ceiling(214.8)

Round the value up to the first integer. The result of the function in this particular case is 215.

ifelse() Conditional command.

ifelse(mydata$Age > 22,

 yes = 1,

 no = 0)

A function is used to execute a conditional command. In the concrete example, the result of

the function is a vector of values, where people older than 22 years have the value 1, otherwise

0.

ifelse(mydata$Age >= 22,

 yes = 1,

 no = 0)

A function is used to execute a conditional command. In the concrete example, the result of

the function is a vector of values, where people older or equal to 22 years have the value 1,

otherwise 0.

seq() A sequence of values.

seq(from = 0, to = 100, by = 20)

The function is used to create a vector of values with a constant difference between them. In

the concrete case, the result is c(0, 20, 40, 60, 80, 100).

log()

exp()

Calculation of logarithm and exponential function
(anti-logarithmization).

mydata$lnHeight <- log(mydata$Height)

mydata$lnHeight <- log(podatki$Height, base = 10)

Calculation of the logarithm. In the first case we calculate the natural logarithm, in the second

case the decimal logaritm.

scale() Standardization

mydata$Height_z <- scale(mydata$Height)

Standardization of the individual variables. In the concrete case, we assign the new variable

to the existing data table.

mydata_std <- scale(mydata)

Data table standardization.

sqrt() Square root.

sqrt(mydata$Height)

Calculation of root values.

aggregate() Aggregation.

aggregate(mydata$Height, by = list(mydata$Gender),

 FUN = sum)

Aggregation of a variable with respect to a categorical variable. In this particular case, we add

up all the heights of the individuals for each gender separately. Enter any function (sum, mean

etc.) in the argument FUN to calculate the parameter of interest.

recode() Value recoding.

library(car)

recode(mydata$Height,

 "150:160 = 155; 160:170 = 165; 170:180 = 175; 180:190 = 185")

Recoding a range of values to a new value. In this particular case, all values between 150 and

160 cm are recoded to 155 cm, and so on. (Threshold values are recoded to the value which

they first fall according to the written code; in this particular case, the value 160 is recoded to

the value 155, not 165. If we were to write the code in the order "160:170 = 165; 150: 160 =

155...", the value 160 would be recoded to the value 165). To use the function, we need to

install and activate the library car.

rep() Reproduction of value.

mydata[rep(1:nrow(mydata), times = mydata$Frequency),]

With the function we reproduce each row in the data table as many times as the value of

frequency (argument times). The function is used, for example, when we have data in sorted

form (freqency table – aggregated data) and we need to convert it to unsorted form – raw

data.

Page 4 of 14

 FUNCTIONS FOR ECONOMISTS

V2.0, 08. oktober 2023 DENIS MARINŠEK, www.denis-statistika.si

replace_with_na() Replacing the value with NA.

library(dplyr)

library(naniar)

mydata <- mydata %>%

 replace_with_na(replace = list(parliament = c(77, 88, 99),

 police = c(77, 88, 99),

 politics = c(77, 88, 99)))

Replace numeric codes representing missing values with the value NA. To use the function,

we need to install and activate the library dplyr and naniar.

drop_na() Removing units with missing values.

library(tidyr)

mydata <- drop_na(mydata)

Removing units that have a missing value for any of the variables. To use the function, we

need to install and activate the library tidyr.

order() Sorting units by values.

print(mydata[order(-mydata$Points, mydata$Time),])

We display a table of data sorted in descending order by the number of points scored, and

units with the same number of points scored are sorted in ascending order by writing time

DESCRIPTIVE STATISTICS
mean() median()

sd() var() range()

min() max() sum()

Estimation of statistical parameters: mean, median,
standard deviation, variance, range, minimum,
maximum, sum.

mean(mydata$Age)

median(mydata)

Evaluation of a single parameter for a selected variable or the entire table.

quantile() Estimation of quantile.

quantile(mydata$Age, p = 0.35)

Using the argument p, which determines the rank of the quantile, we can estimate any quantile.

In this particular case, we estimate the 35th centile.

summary() Estimation of parameters.

summary(mydata)

The function provides an estimate of the minimum, first quartile, mean, median, third quartile,

and maximum. In the case of variables defined as a factor, the function gives the frequency

of each category.

stat.desc() Estimation of parameters.

library(pastecs)

stat.desc(mydata)

round(stat.desc(mydata), 1)

The function provides a wide range of parameter estimates. The values are given to 7 decimal

places, so it is useful to combine the function with the function round. To use the function,

we need to install and activate the pastecs library.

describe() Estimation of parameters.

library(psych)

describe(mydata)

The function gives a wide range of parameter estimates. To use the function, we need to install

and activate the psych library.

Page 5 of 14

 FUNCTIONS FOR ECONOMISTS

V2.0, 08. oktober 2023 DENIS MARINŠEK, www.denis-statistika.si

describeBy() Estimation of parameters, seperated by groups.

library(psych)

describeBy(mydata$Age, group = mydata$Gender)

The function provides a wide range of parameter estimates separated by categories (groups).

To use the function, we need to install and activate the psych library.

sapply() Estimation of selected parameter.

sapply(mydata, FUN = mean)

sapply(mydata, FUN = quantile, probs = c(0.01, 0.99))

The function gives estimates of the selected parameter for all variables located in the data

table.

table() The number of repetitions of single value.

table(mydata$Gender)

The function specifies the number of repetitions of a single value for the selected variable.

nrow()

length()

Number of rows. The length of the vector.

nrow(mydata)

length(mydata$Age)

The number of rows in the data table or length of the vector (variable).

frq() Frequency table.

library(sjmisc)

table(mydata$Height)

Frequency table for the selected numerical variable. To use the function, we need to install

and activate the sjmisc library.

STATISTICAL DISTRIBUTIONS
pnorm() Calculation of the area under the normal distribution

curve.

pnorm(q = 5, mean = 3, sd = 2, lower.tail = TRUE)

The function gives the area under the probability density curve for the normal distribution to

the left of the selected value of the variable (lower.tail = TRUE) or to the right of the

selected value (lower.tail = FALSE).

qnorm() Calculate the value of the variable for the selected
area for the normal distribution.

qnorm(p = 0.30, mean = 3, sd = 2, lower.tail = TRUE)

The function gives the value of the variable for the selected area under the probability density

curve for a normal distribution. The selected area can be located to the left (lower.tail =

TRUE) or to the right of the calculated limit value (lower.tail = FALSE).

rnorm() Generating random numbers from a given normal
distribution.

rnorm(n = 20, mean = 3, sd = 2)

We generate a selected number (n) of random values from a given normal distribution.

dnorm() Calculation of the density for the normal distribution
at the selected value of the variable.

dnorm(x = 2.5, mean = 3, sd = 2)

We calculate density function at the selected value of the normal distribution.

qt() Calculation of the value of the variable for the
selected area for the t-distribution.

qt(p = 0.05, df = n-1)

The function gives the value of the variable in the selected area under the density curve for

the t distribution at the selected degrees of freedom (df).

Page 6 of 14

 FUNCTIONS FOR ECONOMISTS

V2.0, 08. oktober 2023 DENIS MARINŠEK, www.denis-statistika.si

SAMPLING
choose() Number of combinations without repetition.

library(combinat)

choose(6, 4)

From a population of size 6, we select all possible samples of 4 units without repetition. In

this particular case, it is (6
4
) = 15. To use the function, we need to install and activate the

library combinat.

combn() Print of all possible samples.

library(combinat)

combn(mydata, 4)

Print the values of the variable for each sample. To use the function, we need to install and

activate the library combinat.

combn(mydata, 4, mean)

Output of mean estimates for all possible samples.

VIZUALIZATION OF DATA
hist() Histogram.

hist(mydata$Age,

 main = "Distribution of age",

 ylab = "Frequency",

 xlab = "Age",

 breaks = seq(from = 20, to = 50, by = 5))

We display the data with a histogram. The main argument gives the title of the graph, ylab

and xlab give the axis names, and the width of the columns is given by the breaks argument.

boxplot() Boxplot.

boxplot(mydata$Age)

We plot the data using a boxplot. It consists of a rectangle defining the first, second, and third

quartiles and a vertical line defines the minimum and maximum of the variables under study.

Potential outliers are marked with circles.

ggplot() Tool for graphical representation of data.

library(ggplot2)

ggplot(mydata, aes(x = Age)) +

 geom_histogram(binwidth = 5, colour = "gray") +

 ylab("Frequency")

library(ggplot2)

ggplot(mydata, aes(y = Age)) +

 geom_boxplot()

library(ggplot2)

ggplot(mydata, aes(y = Height, x = Age)) +

 geom_point()

We select the table with the data, and with the argument aes we specify which variable we

draw on each axis. Then we build the chart using + signs. The argument geom_ specifies the

chart type. To use the function, we need to install and activate the ggplot2 library. A more

detailed explanation can be found in the document ggplot2.pdf.

scatterplot() Scatterplot.

library(car)

scatterplot(mydata$Height ~ mydata$Age,

 smooth = FALSE,

 boxplots = FALSE,

 regLine = FALSE,

 ylab = "Height in cm", xlab = "Age in years")

Scatter plot for a pair of numerical variables. The first variable is on the y-axis, the second on

the x-axis. With the arguments smooth = FALSE we turn off smoothing, with the argument

boxplots = FALSE we turn off the display of the boxplot on the axes, with the argument

regLine = FALSE we turn off the linear regression function, and with the arguments ylab

and xlab we name the axes. To use the function, we need to install and activate the library

car.

library(car)

scatterplot(mydata$Height ~ mydata$Age | mydata$Gender,

 smooth = FALSE,

 boxplots = FALSE,

 ylab = "Height in cm", xlab = "Age in years")

Scatter plot, separated by categorical variable.

Page 7 of 14

 FUNCTIONS FOR ECONOMISTS

V2.0, 08. oktober 2023 DENIS MARINŠEK, www.denis-statistika.si

scatterplotMatrix() Matrix of scatterplots.

library(car)

scatterplotMatrix(mydata, smooth = FALSE)

Matrix of scatter plots for each pair of numeric variables. Non-numeric variables must be

excluded from the analysis. To use the function, we need to install and activate the library

car.

HYPOTHESIS TESTING
t.test() Hypothesis about the arithmetic mean.

Hypothesis about the difference between two
arithmetic means.

t.test(mydata$Age,

 mu = 25,

 alternative = "two.sided")

Testing of the hypothesis about the value of the population arithmetic mean. The value of the

null hypothesis is entered into the mu argument, and the alternative argument is used to

determine whether it is a two sided test ("two.sided") or one sided test: ("less") or

("greater").

t.test(mydata$Weight1, mydata$Weight2,

 paired = TRUE,

 alternative = "less")

Testing of the hypothesis about the difference betwen two arithmetic means for the

dependent samples (paired = TRUE).

t.test(mydata$Height ~ mydata$Gender,

 paired = FALSE,

 var.equal = FALSE,

 alternative = "greater")

Testing of the hypothesis about the difference between two arithmetic means for independent

samples (paired = FALSE). With the argument var.equal = FALSE we choose the

Welch correction for the possible difference of the group variances.

anova_test() Analysis of variance for the dependent samples,
rANOVA.

library(rstatix)

anova_test(dv = Trust,

 wid = ID,

 within = System,

 data = mydata_long)

We define the dependent variable (dv), we define the unit identifier (wid), we define the

factor indicating what the dependent variable measures (within), and the data must be in a

long format. To use the function, we need to install and activate the rstatix library.

aov() Analysis of variance for the independent samples,
ANOVA.

aov(Salary ~ Country,

 data = mydata)

We define the dependent variable and the factor that separates the units into groups.

prop.test()

Hypothesis about the proportion.

Hypothesis about the equality of two proportions.

prop.test(x = 150, n = 250,

 p = 0.50,

 correct = FALSE,

 alternative = "two.sided")

We determine the number of events (x) and the number of all trials (n). Using the argument

p, we determine the null hypothesis, exclude the correction, and determine the alternative

hypothesis.

prop.test(c(195, 45), c(234, 89),

 correct = TRUE,

 alternative = "two.sided")

Testing of the hypothesis about the equality of two proportions. In the specific case, we check

whether the proportion 195/234 is statistically different from the proportion 45/89.

shapiro.test()

Hypothesis about whether the variable is normally
distributed.

shapiro.test(mydata$Difference)

We use the Shapiro-Wilk test to check whether the variable is normally distributed.

Page 8 of 14

 FUNCTIONS FOR ECONOMISTS

V2.0, 08. oktober 2023 DENIS MARINŠEK, www.denis-statistika.si

pairwise.t.test() Comparison of all pairs of arithmetic means with t-
tests.

pairwise.t.test(mydata$Salary, g = mydata$Country,

 paired = FALSE,

 p.adj = "bonf")

Testing the hypothesis about the difference of two arithmetic means for dependent samples

(paired = TRUE) or independent samples (paired = FALSE) for each pair of variables.

A Bonferroni correction is often used when calculating p-values.

cohens_d()

interpret_cohens_d()

Effect size, determined using Cohen's D statistic.

library(effectsize)

cohens_d(mydata$Age, mu = 25)

interpret_cohens_d(0.52, rules = "sawilowsky2009")

We determine the effect size and then interpret it based on various rules. To use the function,

we need to install and activate the effectsize library.

wilcox_test()

Wilcoxon test for median.

Wilcoxon test for equality of locations of two
distributions for dependent and independent
samples.

wilcox_test(mydata$Age,

 mu = 23,

 correct = FALSE)

The Wilcoxon test for median (nonparametric test) is calculated by determining the median

(mu) and excluding the correction.

wilcox_text(mydata$Weight1, mydata$Weight2,

 paired = TRUE,

 correct = FALSE, exact = FALSE,

 alternative = "two.sided")

The Wilcoxon test for equality of two distribution locations for dependent samples (Wilcoxon

signed rank test - nonparametric test) is computed by specifying both variables and chosing

the argument paired = TRUE. We specify the alternative hypothesis and we exclude the

correction and the calculation of the exact p-value.

wilcox_text(mydata$Height ~ mydata$Gender,

 paired = FALSE,

 correct = FALSE, exact = FALSE,

 alternative = "less")

The Wilcoxon test about the equality of two distribution locations for independent samples

(Wilcoxon rank sum test - nonparametric test) is calculated by specifying the dependent

variable and the factor that determines which group the observation refers to. We specify the

argument paired = FALSE and the alternative hypothesis. The correction and the

calculation of the exact p-value are excluded.

binom.test()

Binomial test (proportion test).

Sign test.

binom.test(x = 150, n = 250,

 p = 0.70,

 alternative = "two.sided")

We determine the number of events (x) and the number of all trials (n). Using the argument

p, we determine the null hypothesis and specify the alternative hypothesis. If p = 0.50, we

perform a sign test.

friedman_test() Friedman ANOVA.

library(rstatix)

friedman_test(Trust ~ System | ID,

 data = mydata_long)

We define a dependent variable and a factor that indicates what the dependent variable

measures, and then an identifier that assigns the measurement to an individual unit. The data

must be in long format. This is a nonparametric test. To use the function, we need to install

and activate the rstatix library.

kruskal.test() Kruskal-Wallis Rank Sum test.

kruskal.test(Salary ~ Country,

 data = mydata)

We define the dependent variable and the factor that separates the units into groups. This is

a nonparametric test.

Page 9 of 14

 FUNCTIONS FOR ECONOMISTS

V2.0, 08. oktober 2023 DENIS MARINŠEK, www.denis-statistika.si

summarySE() Calculation of the parameters of the confidence
intervals for the arithmetic mean by groups.

library(Rmisc)

summarySE(mydata,

 measurevar = "Height",

 groupvars = "Gender",

 conf.interval = 0.95)

We define data containing a numeric variable for which we calculate a confidence interval for

the arithmetic mean (measurevar), and a categorical variable that divides the values of the

variable into groups (groupvars). To use the function, we need to install and activate the

Rmisc library.

VarTest() Hypothesis about the value of the variance.

Hypothesis about the ratio of two variances.

library(DescTools)

VarTest(mydata$Height,

 sigma.squared = 5,

 alternative = "two.sided")

Testing the hypothesis about the value of the variance. With the argument sigma.squared

we determine the value in the null hypothesis, and with the alternative argument we

determine whether it is a two-sided hypothesis ("two.sided"), a hypothesis that is directed

to the left ("less") or to the right ("greater"). To use the function, we need to install and

activate the DescTools library.

library(DescTools)

VarTest(mydata$Height ~ mydata$Gender,

 alternative = "two.sided")

Hypothesis about the assumption of equality of two variances (whether their ratio is equal to

1). In the specific case, we check whether the height variances differ between the sexes, and

the alternative argument is used to determine the alternative hypothesis To use the

function, we need to install and activate the DescTools library.

ANALYSIS OF CATEGORICAL VARIABLES
chisq.test() Pearson 𝜒2-test.

𝜒2-test for given probabilities.

chisq.test(mydata$Gender, mydata$Place,

 correct = FALSE)

We use the test to check if there is a relationship between two categorical variables. If both

variables have exactly two categories, we use the argument correct = TRUE.

chisq.test(x = c(150, 200, 350), p = c(0.30, 0.30., 0.40),

 correct = FALSE)

We test whether two distributions are the same. In the argument p we write the expected

probabilities, which are used to determine the expected frequencies.

fisher.test() Fisher's exact probability test.

fisher.test(mydata$Gender, mydata$Place)

We use the test to check if there is a relationship between two categorical variables.

Page 10 of 14

 FUNCTIONS FOR ECONOMISTS

V2.0, 08. oktober 2023 DENIS MARINŠEK, www.denis-statistika.si

CORRELATION AND REGRESSION ANALYSIS
cor()

cor.test()

Estimation of the correlation coefficient.
Hypothesis about the value of the correlation
coefficient.

cor(mydata$Age, mydata$Height,

 method = c("pearson", "spearman"))

Estimation of the correlation coefficient between two numerical variables. Either Pearson's

or Spearman's correlation coefficients can be calculated.

cor(mydata)

Estimation of correlation matrix. The data table must contain only numerical variables.

cor.test(mydata$Age, mydata$Height,

 method = c("pearson", "spearman"))

Hypothesis about the value of the correlation coefficient.

rcorr() Correlation matrix

library(Hmisc)

rcorr(as.matrix(mydata), type = c("pearson", "spearman"))

An estimate of the correlation matrix, containing either Pearson's or Spearman's correlation

coefficients for each pair of numeric variables. p-values are also provided below the matrix to

test the hypothesis about the value of the correlation coefficient. To use this function, the

library Hmisc must be installed and activated.

pcor() Estimation of the partial correlation coefficient.

library(ppcor)

pcor(mydata)

An estimate of the partial correlation coefficient for each pair of numeric variables in the data

table. To use this function, the library ppcor must be installed and activated.

lm() Linear regression model estimation (OLS method).

lm(Height ~ Age + Gender + Age:Gender,

 data = mydata)

Estimation of the linear regression function using the least squares method. The dependent

variable is indicated to the left of the tilde (~), while the explanatory variables are indicated to

the right, separated by the sign +. Interactions are included by indicating the sign between the

variables :

fit <- lm(Height ~ Age + Gender,

 data = mydata)

summary(fit)

Showing the results of the estimated regression function.

glm() Linear regression model estimation (ML method).

glm(Height ~ Age + Gender,

 data = mydata)

Estimation of the linear regression function using the maximum likelihood method. The

dependent variable is indicated to the left of the tilde (~), while the explanatory variables are

indicated to the right, separated by the sign +. Interactions are included by indicating the sign

between the variables :

glm(Smoker ~ Age + Gender,

 family = binomial,

 data = mydata)

Estimation of a binary logistic regression function.

fit <- glm(Smoker ~ Age + Gender,

 family = binomial,

 data = mydata)

summary(fit)

Showing the results of the estimated regression function.

ols_test_breusch_

pagan()

Breusch-Pagan heteroskedasticity test.

library(olsrr)

ols_test_breusch_pagan(fit)

Test for the presence of heteroskedasticity. To use the function, we need to install and activate

the olsrr library.

Page 11 of 14

 FUNCTIONS FOR ECONOMISTS

V2.0, 08. oktober 2023 DENIS MARINŠEK, www.denis-statistika.si

shapiro.test()

Hypothesis if the variable is normally distributed.

shapiro.test(mydata$StdResiduals)

We use the Shapiro-Wilk test to check whether the variable is normally distributed.

vif() Checking for multicollinearity.

vif(fit)

Checking the degree of correlation between explanatory variables.

lm.beta() Estimation of standardized partial regression
coefficients.

library(lm.beta)

lm.beta(fit)

Estimation of the standardized partial regression coefficients of the regression model. To use

the function, we need to install and activate the library lm.beta.

anova() Comparison of two regression models in terms of fit
to data.

anova(fit1, fit2)

Statistical comparison of two regression models estimated by the least squares method.

anova(fit1, fit2, test = "Chi")

Statistical comparison of two regression models estimated by the maximum likelihood

method.

lm_robust() Linear regression model estimation with robust
standard errors.

library(estimatr)

lm_robust(Height ~ Age + Gender,

 se_type = "HC1",

 data = mydata)

Estimation of the regression model with robust White's standard errors. The correction is

applied when the assumption of homoskedasticity is violated. To use this feature, the library

must be installed and activated estimatr.

lme() Estimation of a multilevel linear regression model
(ML method).

library(nlme)

fit <- lme(Stress ~ Age + GenderF + SizeF,

 random = ~ 1 | ID_hospital / ID_department,

 method = "ML",

 data = mydata)

Estimation of multilevel (hierarchical) regression model using the maximum likelihood

method. We specify the regression model, and the argument random is used to determine the

random regression constant. In a spceific case, this is determined at the hospital and

department level. To use the function, we need to install and activate the nlme library.

PRINCIPAL COMPONENT ANALYSIS AND FACTOR ANALYSIS
cortest.bartlett() Bartlett's test of sphericity.

library(psych)

cortest.bartlett(R, n = nrow(mydata))

Bartlett's test of sphericity of the correlation matrix. The input element is the value of the

correlation matrix created with the cor() function. We also specify the number of units in

the sample. To use the function, the psych library must be installed and activated

det() Determinant of the correlation matrix.

det(R)

Determinant of the correlation matrix, with which we check the degree of correlation between

the variables.

KMO() Kaiser-Meyer-Olkin measure of sampling adequacy.

library(psych)

KMO(R)

Calculation of KMO statistics and individual MSA statistics to check the adequacy of each

variable. To use this function, the library psych must be installed and activated.

Page 12 of 14

 FUNCTIONS FOR ECONOMISTS

V2.0, 08. oktober 2023 DENIS MARINŠEK, www.denis-statistika.si

PCA() Principal Component Analysis.

library(FactoMineR)

library(factoextra)

PCA(mydata,

 scale.unit = TRUE,

 ncp = 3,

 graph = FALSE)

Applying the principal component analysis to selected numeric variables. With the argument

scale.unit = TRUE we perform the normalization of the variables, with the argument

ncp we determine the number of components. To use the function, we need to install and

activate the libraries FactoMineR and factoextra.

pca <- PCA(mydata,

 scale.unit = TRUE,

 graph = FALSE)

get_eigenvalue(pca)

We show the eigenvalues of the principal components.

fviz_eig(pca,

 choice = "eigenvalue",

 addlabels = TRUE)

Eigenvalue chart.

fviz_pca_var(pca, repel = TRUE)

Graphic representation of the loadings of the principal components.

fviz_pca_biplot(pca)

Graphical representation of the position of the units in relation to the values of the first two

principal components.

fa.parallel() Parallel analysis.

library(psych)

fa.parallel(mydata,

 sim = FALSE,

 fa = c("pc", "fa"))

Parallel analysis to determine the number of principal components or factors to be retained

in the final result. We include only numeric variables in the data table, exclude simulation, and

use the argument fa to indicate whether we are performing principal component (pc) or

factor (fa) analysis. To use the function, we need to install and activate the psych library.

corPlot() Graphical representation of the correlation matrix.

library(psych)

corPlot(R)

Graphical representation of the correlation matrix. The input element is the value of the

correlation matrix created by the cor() function. The colors indicate the strength of the

correlation for each pair of variables. To use the function, we need to install and activate the

psych library.

fa() Factor Analysis.

library(psych)

library(GPArotation)

fa(mydata,

 covar = FALSE,

 nfactors = 3,

 fm = "minres",

 rotate = "oblimin",

 inpute = "mean")

Performing factor analysis for selected numerical variables. The argument covar is used to

specify whether the analysis is performed on the covariance matrix (covar = TRUE) or on

the correlation matrix (covar = FALSE), the argument nfactors is used to specify the

number of factors, the argument fm is used to specify the factor method (recommended use

of minres – minimum residual method), the argument rotate is used to specify the type of

factorial rotation (oblique oblimin or orthogonal varimax). Missing values can be replaced

by average values of variables (inpute = "mean"). To use this function, the libraries psych

and GPArotation must be installed and activated.

factor <- fa(mydata,

 covar = FALSE,

 nfactors = 3,

 fm = "minres",

 rotate = "oblimin",

 inpute = "mean")

print.psych(factor,

 cut = 0.3,

 sort = TRUE)

We present the results of the factor analysis. Low factor loadings are not shown (cut), and

factor loadings are shown in descending order (sort).

fa.diagram(factor)

Graphic representation of the factor model.

Page 13 of 14

 FUNCTIONS FOR ECONOMISTS

V2.0, 08. oktober 2023 DENIS MARINŠEK, www.denis-statistika.si

alpha() Cronbach alpha.

library(psych)

alpha(mydata, check.keys = TRUE)

Calculation of Cronbach's alpha for selected numeric variables. The argument check.keys

= TRUE ensures that all indicators point in the same direction. To use this function, the

psych library must be installed and activated.

CLUSTERING
get_dist() Calculation of distances between units.

library(factoextra)

get_dist(mydata, method = "euclidean")

Calculation of Euclidean distances between units. The distance type is specified with the

argument method. The distances "manhattan" and "minkowski" are also commonly used.

To use this function, the factoextra library must be installed and activated.

distances <- get_dist(mydata, method = "euclidean")

fviz_dist(distances)

Graphical representation of the distance matrix.

get_clust_tendency() Calculation of Hopkins statistics.

library(factoextra)

get_clust_tendency(mydata,

 n = nrow(mydata)-1,

 graph = FALSE)

Calculation of Hopkins statistics, which is used to check whether the data are suitable for

carrying out the clustering.

hclust() Hierarchical clustering.

library(dplyr)

library(factoextra)

WARD <- mydata %>%

 get_dist(method = "euclidean") %>%

 hclust(method = "ward.D2")

Implementation of hierarchical clustering based on selected numerical variables. In the first

step, the data is selected, then (%>%) the distances between the units are calculated

(get_dist), and then hierarchical clustering (hclust) is performed based on these distances

according to the selected algorithm (method). It is recommended to use Ward's algorithm,

which is combined with squared Euclidean distance (ward.D2). To use the function, the

libraries dplyr and factoextra must be installed and activated.

fviz_dend(WARD)

Representation of dendrogram (classification tree).

cutree(WARD, k = 3)

Clustering into a selected number of groups.

hkmeans() K-means clustering.

library(factoextra)

hkmeans(mydata,

 k = 3,

 hc.metric = "euclidean",

 hc.method = "ward.D2")

Clustering by the k-means method, starting from the solution obtained by hierarchical

clustering. We need to specify the number of groups (k) into which we want to group the

units, and the arguments hc.metric and hc.method should match the selected algorithm

for hierarchical sorting, based on which we decided on the number of groups. To use the

function, we need to install and activate the factoextra library.

kmeans <- hkmeans(mydata,

 k = 3,

 hc.metric = "euclidean",

 hc.method = "ward.D2")

fviz_cluster(kmeans)

Graphical representation of the clustering, with the first and second principal components

shown on the axes.

Page 14 of 14

 FUNCTIONS FOR ECONOMISTS

V2.0, 08. oktober 2023 DENIS MARINŠEK, www.denis-statistika.si

TIME SERIES
lm() Calculation of linear or exponential trend (OLS

method).

lm(Overnights ~ t,

 data = mydata)

Linear trend function. The variable t is the time, defined as 1, 2, 3, …, N.

lm(lnOvernights ~ t,

 data = mydata)

Exponential trend function. The variable t is the time, defined as 1, 2, 3, …, N.

ts() Determination of time series.

ts(mydata$Overnights,

 start = c(2020, 1),

 end = c(2022, 12),

 frequency = 12)

We define the variable as a time series. The start argument is used to determine the first

observation (in the concrete case it is 2020, the first month), the end argument is used to

determine the last observation (in the concrete case it is 2022, the last month), and the

frequency argument is used to determine how many time units are within a period. In the

concrete case, the data is given monthly, so a total of 36 observations.

overnights <- ts(mydata$Overnights,

 start = c(2020, 1),

 end = c(2022, 12),

 frequency = 12)

plot(overnights,

 ylab = "Monthly number of overnights")

Graphical display of time series.

decompose() Decomposition of time series.

decompose(Overnights,

 type = "multiplicative")

Breakdown of the time series into basic elements (trend, cyclical component, period, and

irregular component). The variable we analyze must be the result of the ts() function. For

the type of decomposition, we choose the multiplicative approach.

overnights <- ts(podatki$Overnights,

 start = c(2020, 1),

 end = c(2022, 12),

 frequency = 12)

decomposition <- decompose(overnights,

 type = "multiplicative")

plot(decomposition)

Graphical representation of a time series decomposition.

